

OOP WITH WINDEV

How to start

Maxime Keltsma

OPP With Windev - Maxime Keltsma

www.smaltek.fr smaltek62@gmail.com 1

Table des matières
1 Abstract classes and interfaces ... 2

1.1 Implementation with Windev ... 3

2 Static and dynamic instantiation ... 6

2.1 Static instantiation .. 6

2.2 Dynamic instantiation ... 8

3 Reference taking and object copy ... 9

4 Properties (accessors) ... 10

5 Multiple inheritance .. 11

6 Class methods and class attributes ... 14

7 Miscalenous ... 16

7.1 Call a parent class method .. 16

7.2 Determine whether or not a reference point to an object ... 17

7.3 The "This" reference .. 17

7.4 Declare a structure in a class ... 17

OPP With Windev - Maxime Keltsma

www.smaltek.fr smaltek62@gmail.com 2

1 Abstract classes and interfaces

These two concepts are very close one of the other and even swappable. Reminder of these two

concepts according to the OOP standards:

Abstract class :

• It is a class defined with the abstract keyword.

• Such a class cannot instantiate objects. It can only be used to derive other classes.

• Can define methods implemented or not implemented. In the latter case the method is said

to be abstract.

• A class must be abstract if it has at least one abstract method.

• The abstract methods are implemented by sub classes.

Interface :

• An interface is defined with the keyword interface.

• This is a set of methods that only the signature is provided (the method name, input

parameters types and return value type).

• Classes that implement an interface are required to implement the methods defined in this

interface.

• A class can implement multiple interfaces.

In the current version of Windev (version 18) the concepts of abstract class and interface does not

exist. It will be necessary to get something that can play the role of an abstract class or an interface.

Suppose we have to implement the following class diagram:

OPP With Windev - Maxime Keltsma

www.smaltek.fr smaltek62@gmail.com 3

This is classically a method (move()), whose signature is defined in an interface, and which must be

implemented within two classes (Car and Duck). Of course each subclass will have a different

implementation of move():

The Car class will return the string "I drive".

The Duck class will return the string "I fly".

1.1 Implementation with Windev

With Windev (version 18), as previously indicated, we cannot create explicitly interfaces nor true

abstract class we will therefore create a class and make a few changes that will make it a kind of

abstract class / interface.

The class can have:

• only not implemented methods as an interface.

• implemented or not implemented methods, as an abstract class.

Create the IMovable class:

• The constructor should be PRIVATE to prohibit any instantiation, but Windev does not accept

it. So we can make it PROTECTED so that the sub classes, and only it, could instantiate

IMovable objects. It is a lesser evil.

• The moveYourself() method must be virtual to be redefined in sub classes. It must also

define the return value, which explains that it returns an empty string on line 3.

OPP With Windev - Maxime Keltsma

www.smaltek.fr smaltek62@gmail.com 4

We just have to create the sub classes:

OPP With Windev - Maxime Keltsma

www.smaltek.fr smaltek62@gmail.com 5

Now we can use our two classes. We instantiate an object of each class and we call the

moveYourself() method:

And here is the spectacular result:

OPP With Windev - Maxime Keltsma

www.smaltek.fr smaltek62@gmail.com 6

This approach allows to simulate something that can play the role of abstract class / interface.

There is still a drawback: IMovable constructor is not private but simply protected, the sub classes

might theoretically instantiate IMovable objects. The responsibility of do not instantiate is based

exclusively on the developer.

Note that version 19 of Windev would support real abstract classes. This is to be confirmed.

2 Static and dynamic instantiation

Suppose we have a CL_Boat class.

2.1 Static instantiation

Features:

• The object is instantiated immediately.

• The name given to the object is treated as a variable by the language.

Syntax:

OPP With Windev - Maxime Keltsma

www.smaltek.fr smaltek62@gmail.com 7

< ObjectName > is [object] < class name > ([< parameters >])

Therefore multiple syntaxes are allowed:

• myBlueBoat is object CL_Boat

• myBlueBoat is CL_ Boat

For do not instantiate the object immediately, it must be set to NULL:

myBlueBoat is a CL_ Boat = NULL

In this case, the assignment of an object to the static reference, is done with the operator "<-".

• Either by instantiating an object at the same time:

myBlueBoat <- new CL_Boat

• Either by setting an already existing object:

B1 is a CL_Boat

myBlueBoat <-B1

Windev official documentation indicates that static instantiation does not support polymorphism.

However I have seen that the parametric polymorphism as well as inclusion polymorphism work with

static instantiations.

Here is the description of my tests:

Parametric polymorphism:

• Create a class with an accelerate() method that returns a string.

• In the same class, override the accelerate() method (speed is integer). It also returns a string.

• There are therefore two signatures: one takes no parameters, the other takes an integer.

• In the code of a window, instantiate statically an object of the class containing the

accelerate() method, and then call the two methods: parametric polymorphism works with

objects instantiated statically.

OPP With Windev - Maxime Keltsma

www.smaltek.fr smaltek62@gmail.com 8

Inclusion polymorphism:

• Create a A class with a start() method without parameters and returning a string.

• Create a B class derives from class A, redefining the start() method and returning a string but

different from the A class method returned string.

• Statically instantiating an object from A class and an object from B class.

• Invoke the start() method on the two objects: each returns its string. Inclusion polymorphism

works with static objects.

2.2 Dynamic instantiation

Dynamic instantiation is done in two steps:

• Creation of the reference using the dynamic keyword.

• Instantiating the object and setting it to the reference.

A common technique is to declare the references in the declarative part of a class, and instantiate

objects in the constructor, or even in one of the methods.

Syntax for reference creation:

<Object Name> is [objet] <Class Name> dynamic

Example:

B1 is CL_Boat dynamic

Syntax for instantiating the object:

<Object Name> = new < Class Name > ([<Paramètres>])

Example:

B1 = new CL_Boat

OPP With Windev - Maxime Keltsma

www.smaltek.fr smaltek62@gmail.com 9

It is of course possible to perform two steps (reference creation and object instantiating) in a single

line of code:

B1 is CL_Boat dynamic = new CL_Boat

3 Reference taking and object copy

Taking reference, as its name implies, allows to create a reference and associate it with an existing

object.

As for object copy, it creates a clone of an object and associates it with a reference.

Depending on static or dynamic objects, three operators are available to deal with all situations:

Operator "=" Object Dynamic object

Object Copy Copy

Dynamic object Take reference Take reference

Operator <= Object Dynamic object

Object Copy Copy

Dynamic object Copy Copy

Operator <- Object Dynamic object

Object Take reference Take reference

Dynamic object Take reference Take reference

OPP With Windev - Maxime Keltsma

www.smaltek.fr smaltek62@gmail.com 10

4 Properties (accessors)

In OOP a property is a combination of an attribute with two methods for accessing this attribute. One

to read, the other to write. The 3 elements in the same class.

WinDev supports properties:

To create a property:

• In the project tree, select the relevant class and right click on «properties».

• Enter a name for the property.

• Windev generates two methods, unimplemented, bearing the name of the property:

o One with no parameter: it will allow to read the attribute.

o The other takes a parameter: it will allow to change the attribute value.

The relevant attribute must be created manually.

You have to implement the two methods.

OPP With Windev - Maxime Keltsma

www.smaltek.fr smaltek62@gmail.com 11

It is of course possible to get the same result without using properties:

• Create the relevant attribute.

• Create manually two methods, one that returns the value of the attribute, the other takes a

parameter and changes the attribute value.

5 Multiple inheritance

With multiple inheritance, a class can directly inherit from multiple classes. This feature tends to

disappear in recent object-oriented languages, as source of confusion and difficulty of maintenance.

Languages that do not support multiple inheritance, propose instead a mechanism based on the

single-inheritance, associated with the technique of the interfaces (see relevant chapter).

WinDev supports multiple inheritance. Suppose we have to implement the class diagram below:

Here's the implementation of the classes:

OPP With Windev - Maxime Keltsma

www.smaltek.fr smaltek62@gmail.com 12

OPP With Windev - Maxime Keltsma

www.smaltek.fr smaltek62@gmail.com 13

Here is a piece of code using our classes:

OPP With Windev - Maxime Keltsma

www.smaltek.fr smaltek62@gmail.com 14

And here is the stunning result:

Note that in design patterns world, multiple inheritance is banned.

6 Class methods and class attributes

OPP With Windev - Maxime Keltsma

www.smaltek.fr smaltek62@gmail.com 15

The global keyword is used to define class attributes and class methods. That mean that this

attribute or this method will exist only in a single place in the class and will not be represented in

objects instantiated from this class.

This is of interest when we want to factorize a resource (method or attribute) so that it is common to

all objects of the class.

Go to auction: we create a class to handle buyers bidding. But we hope that the amount of auctions

is represented only once and is common to all buyers. We just have to declare the amount of

auctions global.

Here's the class:

Here is a piece of code that uses our CL_Buyer class:

OPP With Windev - Maxime Keltsma

www.smaltek.fr smaltek62@gmail.com 16

Here is the result for execution: the amount of auctions is well shared by all buyers.

In this example we used a global attribute . You can do the same with a method: just declare it

global.

7 Miscalenous

7.1 Call a parent class method

OPP With Windev - Maxime Keltsma

www.smaltek.fr smaltek62@gmail.com 17

Ancestor:method_name()

The ancestor keyword refers to the parent class.

It is also possible to reference a class ancestor by its name:

 class_name:method_name()

7.2 Determine whether or not a reference point to an object

IF <my_reference> = NULL ...
IF <my_reference> <> NULL ...

7.3 The "This" reference

The equivalent of the 'this' of Java is 'object' with Windev: in this example it instantiates a CL_Boat

object by passing in the reference parameter of the object running this line of code.

MyBoat is a CL_Boat = new CL_Boat (object)

7.4 Declare a structure in a class

The structure must be declared at the very beginning of the class before the line:

< MyClass > is a class

OPP With Windev - Maxime Keltsma

www.smaltek.fr smaltek62@gmail.com 18

End of document

