
COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 1

COSMIC DESIGN PATTERNS WITH PHP

A tutorial describing in PHP, 13 design patterns among the most used.

 1 Preamble

This tutorial is for developers who want to discover or deepen design patterns, these programming
models each addressing a particular problem.

(http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29)

Each design pattern is autonomous. It is not necessary to follow the order in which they appear in
this tutorial.

However, Pseudo Factory and Abstract Factory FactoryMethod are three patterns forming a family.

Also Composite relies on Composite Iterator.

The PHP language is used. It’s therefore necessary to have a small web environment and an IDE
(Integrated Development Environment). See the chapter "Tools Used" in the appendix.
.

All PHP code is provided in a separate archive, available www.smaltek.fr.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 2

Table des matières

1 Preamble __ 1

2 STRATEGY PATTERN ___ 5

2.1 First approach ___ 6

2.2 Deuxième approche __ 8

2.3 Heading Strategy pattern ___ 10

2.3.1 Implementing changing behaviors ___ 12

2.3.2 How to define the behavior of each robot ___ 12

2.3.3 Provide robots behavior ___ 14

2.3.4 Coding ___ 16

2.3.5 Even more flexibility __ 27

2.3.6 A global vision ___ 32

3 OBSERVER PATTERN __ 35

3.1 Heading Observer Pattern __ 36

3.1.1 Class Diagram ___ 39

3.2 Implementation __ 40

3.2.1 Coding ___ 42

4 DECORATOR PATTERN ___ 52

4.1 Heading Decorator pattern ___ 56

4.2 Class Diagram __ 58

4.3 Implementation __ 60

4.3.1 Coding ___ 60

5 SINGLETON PATTERN ___ 69

5.1 Heading Singleton pattern __ 70

5.2 Coding __ 72

6 Design patterns related to Factory ___ 77

7 PSEUDO FACTORY __ 80

7.1 Coding __ 84

8 FACTORY METHOD PATTERN ___ 94

8.1 Coding __ 98

8.2 Tests __ 106

9 ABSTRACT FACTORY PATTERN ___ 109

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 3

9.1 Coding ___ 116

9.2 Tests __ 129

10 COMMAND PATTERN __ 132

10.1 Class Diagram ___ 141

10.2 Coding ___ 143

10.3 Tests __ 159

10.4 Conclusion __ 162

11 ADAPTER PATTERN __ 164

11.1 Tests __ 176

12 FACADE PATTERN ___ 179

12.1 Coding ___ 182

12.2 Tests __ 190

13 TEMPLATE METHOD PATTERN ___ 193

13.1 Class model ___ 197

13.2 Coding ___ 198

13.3 TESTS __ 202

14 STATE PATTERN ___ 205

14.1 Coding ___ 209

14.2 TESTS __ 217

15 ITERATOR PATTERN __ 219

15.1 Presentation of the Iterator pattern ___ 223

15.2 Coding ___ 227

15.3 Tests __ 234

16 COMPOSITE PATTERN __ 236

16.1 How to browse a tree ___ 238

16.2 How does the Composite pattern work __ 240

16.3 The B alternative coding __ 244

16.4 Can we go further? ___ 255

16.5 Automatic propagation scanning __ 256

16.6 The A alternative __ 259

16.7 A alternative coding __ 263

17 Additional Notions___ 274

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 4

17.1 Loose Coupling __ 274

17.2 The open / closed principle __ 274

17.3 Recursion __ 274

17.3.1 The recursive function. __ 274

17.3.2 Other kind of recursion: __ 275

18 Annexes ___ 276

18.1 Naming Conventions ___ 276

18.2 PHP source code ___ 276

18.3 Tools used __ 276

19 Conclusion ___ 279

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 5

 2 STRATEGY PATTERN

The USS Enterprise uses different types of robots to perform certain tasks: exploration, intelligence,
taking measurements, and even cleaning the corridors of the Enterprise.

Some walk, others run or fly.

They are aware of their mission parameters including the route to perform. A program can follow
the screen.

Some types of robots can now become invisible, as robots such SPY.

Captain Kirk says you care to change the program in order to use these new robots and their ability
to become invisible.

The previous developer used object-oriented programming model with the following classes, and
two implementations:

• Cleaner: cleaning robot. It moves with wheels.

• Spy: intelligence robot. It walks like a human.

It only remains to add a Disappear() method in our model and voila. We can control the invisibility
of robots involved.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 6

 2.1 First approach

Try to add disappear() method to the superclass.

The job was not very difficult, but we quickly found some drawbacks:

1. The cleaner robot is not affected by invisibility. Yet we will be forced to add a disappear()
method.

2. The display() method that is common to all types of robots, as implemented in the
superclass, will have to be adapted for robots with invisibility. Indeed it will, and for them
only, add a visual indicator on the screen for invisibility.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 7

Keep on with this approach to see where it leads.

• On the downside No. 1, let's disappear() method empty in cleaner class. It's not very pretty,
but it does not create any particular problem.

• On the downside No. 2, we can override the display() method (give a different
implementation that provided by the superclass) in Spy class, and all the possible subclasses
that require a particular view of the robot. Hmmm ... less pretty.

We would get this:

It did not look too bad, but ... it seems that something is missing. Robots measuring sensors
(Sensor-type) have been forgotten. They are used to collect all kinds of information on a given site,
but cannot move. You place them manually on a site, or place them by another robot.

In short, the robot Sensor Type:

• is not affected by the move() and stop() methods.

• is not currently affected by the disappear() method.

No problem. We add a Sensor class in which:

• We implement the move() method leaving it empty.

• We implement the disappear() method leaving it empty.

• we overwrite stop() method leaving it empty.

• we keep the display() method from the superclass.

We get:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 8

It is time to take evaluate our approach.

• In trying to use only the heritage, it is necessary to override certain methods in subclasses
that require, in order to fit a specific behavior or to inhibit (empty implementation).

• The abstract methods as move() and disappear() must be implemented in subclasses. This
leads eventually to code duplication. Imagine two types of robots that have the same way of
moving. They have the same implementation of the move() method. Having to duplicate the
code is often the sign of a bad approach.

• The behaviors of the various types of robots are defined by inheritance, so statically. It is
impossible to change it dynamically at run-time.

• Here things are not too complicated because we have only three types of robots. But what
would happen with 15 or 20 different types ? Wish good luck to the person responsible for
the maintenance of such a design !

 2.2 Deuxième approche

OK. I know what you think. Simply create an interface for each behavior that is not common to all
robots. In this way, the subclasses can implement interfaces they just need.
.

• Cleaner needs to be Movable, Displayable, Stopable.

• Spy needs to be Movable, Disappearable, Displayable, Stopable.

• Sensor needs to be Displayable.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 9

Changing behaviors are now embedded by interfaces. The corresponding methods have been
removed from the Robot class.

Subclasses implement the interfaces they need, and must define the concrete implementation of
these methods.

We get:

Here we have four interfaces and three subclasses, so a theoretical maximum of 12 implementations
of interfaces (dotted arrows). Luckily, only 8 of 12 are required.
.

Imagine this design with by example:

• 6 interfaces.

• 6 subclasses.

We would be faced with a theoretical maximum of 36 dotted arrows. Unmanageable is not it?

And Spock would not find it fascinating!

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 10

In our first approach, we relied solely on inheritance. Our second approach based on interfaces,
sounded interesting, but it turns out it will quickly lead to a model difficult to maintain.

In addition, both approaches have disadvantages that we just want to avoid in object-oriented
programming:

• Code duplication.

• Obligation to implement empty methods.

• Model whose complexity evolves exponentially with the number of classes or interfaces.

• Rather rigid model that will be hard to change, and is therefore difficult to maintain.

• The robots behaviors are defined in the design of classes, so it is impossible to dynamically
change it at run time.

 2.3 Heading Strategy pattern

Why do we have so much trouble to design a model of effective classes for our three types of robots
?

The problem is that we try to mix two hardly compatible concepts:

• On the one hand, the behaviors of robots which vary greatly from one type of robot to
another. Consider for example the move() method, we know that robots dont move all in the
same way. In addition, some robots dont move at all.

• On the other hand, the types of robots which are concepts that dont change or little.

Trying to directly involve behaviors that change with types of robots that dont change, we get a
rigid and not evolutionary model. In the best case it will be fine only if there are only 2 or 3 types of
robots and 2 or maximum 3 behaviors. And praying that we would never asked to add a fourth.

Strategy pattern is based on a strong separation between these two sets:

• The concepts that change or may change in the future (also known as variability).

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 11

• The concepts that dont change and are unlikely to change in the future (also known as
commonality).

The first step is to form the two sets:

In our commonality, put concepts that dont have a changing character:

• Robots. Indeed the concept of robot is represented by a parent class Robot, and three
subclasses Spy, Sensor and Cleaner. This design is unlikely to be changed. Adding
additional classes as possible but that does not raise problem.

In our variability put the concepts that have a changing character, ie that must be implemented in a
different way, a type of robot to another:

• Move: all robots do not move in the same way.

• Disappear: some robots are not affected.

• Display: The invisible robots will be displayed in a different way.

• Stop: some robots are not affected.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 12

 2.3.1 Implementing changing behaviors

The different Move behaviors are located in concrete classes that implement a new interface called
Movable.

This interface contains a Move() method so it must be implemented by each class.

That’s the way behaviors will be hidden to Robot class, which will only see Movable objects.

In other words, the robots will not know the implementation details of their move() method. They
just know they have a move() method.

 2.3.2 How to define the behavior of each robot

In our first attempts, the association between a behavior and a robot, was frozen in the class
inheritance. This lack of flexibility was the cause of our problems.
Now that these two concepts are completely separate, it is at the instantiation of objects, ie at run
time, that we assign each robot the way to move that suits him.
Do the same for other behaviors (Disappear, Display, Stop)

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 13

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 14

 2.3.3 Provide robots behavior

Now we create the link between a robot and behaviors that will be attributed to him.

• First, a robot must have a reference for each of its behavior. This is a rule that applies to all
types of robots, we create these references in the parent class Robot.

• Finally, any robot must use behaviors it has. For this we create in the superclass Robot, and
for each behavior, a public method that will be responsible for the execution of this
behavior.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 15

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 16

 2.3.4 Coding

It's time to start coding PHP. Start with the behaviors.

We have 4 interfaces:

• Movable

• Displayable

• Stopable

• Disappearable

... and 2-3 classes per interface for specific behaviors.

IMovable interface:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 17

The 3 others interfaces:

Behind IMovable interface, we have the classes:

• MoveUsingWheels

• MoveUsingLegs

• MoveDisabled

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 18

Do the same for the other two classes:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 19

Behind IDisplayable interface, we have the classes:

• DisplayNormally

• DisplayForInvisible

Behind IStopable interface, we have the classes:

• StopNormally

• StopDisabled

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 20

Behind IDisappearable interface, we have the classes:

• DisappearQuick

• DisappearDisabled

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 21

We coded all variables behavior. It only remains to encode robots classes.

Four classes are needed:
• Superclass Robot.

• Cleaner robot, extend Robot class.

• Spy robot, extend Robot class.

• Sensor robot, extend Robot class.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 22

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 23

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 24

Our Strategy pattern is ready to be used. For this we will write a little program a few lines, which
will use the Strategy pattern, ie instantiate robots, and ask them to perform actions.
This program is somewhat the user of Strategy pattern. We can also call it Controller since it
controls the entire operations.

In the case of PHP, the controller can be placed in the index.php file because it is automatically
executed to the invocation of a URL.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 25

Fichier index.php:

It remains only to run our controller (index.php) via a URL in a web browser.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 26

Interesting Mr Spock, but not completely satisfying: we made an effort to separate the variability
and the commonality, but in the end the choice behavior of the robots is statically defined, since this

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 27

choice is made by each robot constructor.

If things are addressed in terms of responsibility, we can say that currently each robot is responsible
for selecting its behaviors.

But is this really the robots to decide ?

And if not them, who must take the responsibility ?

In our little Strategy pattern, the choice behavior of the robots, can be entrusted to the head, and the
head is the controller (index.php).
Not only Controller will instantiate the robots, but it may change their behavior at any time.

By transferring this responsibility to the controller, we reserve the right to change the behavior of
robots at run time, totally dynamic, depending on the context.

 2.3.5 Even more flexibility

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 28

The controller must:

• Choose (instantiate) a behavior.

• Pass this behavior to a robot so that it can adopt.

Add 4 methods to Robot class in order to change behavior:

 The controller may use setMoveBehavior() method every time he wants to change the way a robot
is moving. This behavior must be passed as a parameter.

Here is the code for the other three methods:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 29

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 30

Slightly modify our controller:

What we get at run time:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 31

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 32

 2.3.6 A global vision

We coded well, and our Strategy pattern works fine. The original design has been completely
transformed, but what have we done exactely ?

We extracted variable concepts and we have encapsulated them in families of behaviors.

We kept the parent class Robot and its subclasses, but robots do not directly control their behaviors
because they have been delegated to concrete classes that encapsulate behaviors.

Finally we added methods to change the behavior of robots at runtime. This was absolutely
impossible in the initial approach.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 33

Family picture:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 34

Here is a standard representation of the Strategy pattern that can be found on the internet:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 35

 3 OBSERVER PATTERN

Transponders are these small handheld devices that members of the Enterprise have to the belt.
They use it to communicate, much like a ... cell phone.

We are asked to add a feature allowing transponders receive alerts when certain events occur on the
propulsion system of the vessel.

It can be:

• The temperature of the crystal battery (matter that supply energy to the vessel). The warning
threshold is set to 400 degrees centigrade.

• The level of vibration of the propulsion system. On a scale of 0-7, the warning threshold is
set at 5.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 36

• The speed of the propulsion system. On a scale of 0 to 100, the alert threshold is set at 95.

The transponders will take the initiative to be notified and to stop being notified.

Luckily, what it is required is exactly what can be handled by the Observer pattern. Let's go.

 3.1 Heading Observer Pattern

People who love gardening, can subscribe to a specialized magazine. They will then receive a
regular issue of the magazine, until they decide to end their subscription.

The Observer pattern works on the same principle:

A resource is available through a subscription. This resource is called the Subject.

People interested in this resource subscribe to it. These people are called the Observers.

As long as the Observer is a subscriber, he receives notifications from the Subject.

Any observer can end his subscription. It will stop receiving notifications from the Subject.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 37

A Subject can also be itself Observer to another Subject:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 38

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 39

 3.1.1 Class Diagram

Here is the standard class diagram of the Observer pattern:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 40

 3.2 Implementation

Here we are Mr Scott.

Our subject has to manage the information that interests Observers:

• Lithium crystal temperature.

• Vibration level of the propulsion system.

• Energy level of the propulsion system.

The subject gets this information directly from the various sensors of the Enterprise. No matter how
it was obtained, the thing is that he has, and they are constantly updated.
The concret subject is like a dashboard of the Enterprise propulsion system. Therefore we can call it
"PropulsionBoard".

Transponders are the concrete observers. They must be able to subscribe and unsubscribe from the
subject.

This gives us the following class diagram:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 41

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 42

 3.2.1 Coding

Interfaces:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 43

Transponder class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 44

PropulsionBoard class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 45

We will use index.php as the controller of our pattern.

The controller will instantiate objects and use them.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 46

The result of the execution of the controller should look like this:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 47

You are absolutely right Mr Scott. We will fix it right away.
Overflow detection of critical values is a responsibility of the transponder. It must know these
critical values to be able to react when they are reached or exceeded.

Let's add attributes in the transponder class for storing the critical values.

These values will be transmitted to the transponder during their instantiation.

We also modify the display() method to adjust the display when the values are greater than or equal
to their critical values.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 48

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 49

Finally, we must modify our controller:

Let’s see the controller running:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 50

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 51

In our design, the transponder is the only observer of the PropulsionBoard subject. But suppose we
are asked a voice server recites PropulsionBoard values in speakers.

Like transponders, this new class should implement the interface IObserver and subscribe to
PropulsionBoard. It would merely have a different use of data obtained.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 52

 4 DECORATOR PATTERN

The Enterprise conducts regular missions involve sending teams and equipment to the outside of the
vessel to perform a task.

It may include exploration missions, control, supply, evacuation...

Captain Kirk wants to have a system to identify the components of a mission (teams and hardware
devices) and know the weight of these components, and the total weight and the number of people.

The teams are as follow:

• Medical group (4 people).

• Security group (6 people).

• Scientific group (3 people).

The hardware units are as follows:

• Light medical hardware unit.

• Heavy medical hardware unit.

• Defensive hardware unit (weapons).

• Logistics hardware unit (shelter, bedding, food) .

A mission consists of any combination of teams and hardware units.

Example 1:

1 Medical group.

1 Heavy medical hardware unit.

2 Security group.

Exemple 2:

1 Logistics hardware unit.

2 Scientific group.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 53

At work !

The difficulty here is that we must both:

• "compose" a mission with a set of elements that are the teams and the hardware units.

• Ask each element, especially for its weight or the number of people.

• Ask the mission as a whole, to get the total weight and the total number of people.

One could imagine an abstract class Mission, and a set of subclasses, each representing a
combination of elements:

But knowing:

• That we have 3 types of teams and four types of hardware units.

• that for a mission, each of these elements can be doubled, tripled (there is actually no limit).

The number of classes to create would be virtually unlimited. This approach is definitely
abandoned.

OK it was not a good idea. Try something simpler:

We could keep the Mission class, but the composition of the mission would be represented by
attributes that indicate their amounts:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 54

We get a single class which contains all the information necessary for a mission.

This approach is feasible but has drawbacks:

• It’s a big class and it contains information of different natures.

• Adding a new team or hardware device types, requires modifying the class.

• A mission not using a component, will implement all the same the methods of this
component.

In conclusion, we can do better.

A last idea ?

We could keep a light Mission class, and create a class for each component of a mission (teams and
hardware units).

Then we attach the components to the Mission using in the Mission class, a set of references in the
form of a list, which allows the Mission to know its components and ask them.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 55

This approach is more elaborate:

• The mission is separated from its components.

• The components are hidden behind an interface, so that the mission sees only IConstituants.

The only slight drawback is that the mission must manage its constituents through its
constituantsList attribute. Nevertheless this approach could be used, but we can do even better with
the Decorator pattern.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 56

 4.1 Heading Decorator pattern

The Decorator pattern is similar to Russian dolls: The objects are placed into each other to form the
final composite entity.

Consider a mission composed of the following:

• A Security group (weight: 1.5 tons).

• A light Medical unit (weight: 2 tons).

• A Defense unit (weight: 3 tons).

The encapsulation of objects will be as follows:

• A Mission object (which is the base object, or "decorated" object), encapsulated in a
Security group object.

• The whole is encapsulated in a light Medical unit.

• The whole is encapsulated in a Defense unit.

In fact the order of encapsulation does not matter in this example, but may be depending on the
problem to solve.

But that's not all.
There is a second important aspect: delegation.

To answer these two questions, use the getNbrPersons() and getWeight() methods. All objects must
implement these methods.

These methods are invoked on the object encompassing, and will be automatically delegated to the
included object, and so on until the innermost object.

The response will have been completed by each object to form at the end, a comprehensive
response from the mission.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 57

We will similarly implement getNbrPersons() method to get the total number of people in the
mission and satisfy the captain requirements.

This way to call several times the same method in an interleaved manner, is based on recursion (see
the chapter: Recursion in Apendix).

This special technique is rarely used. It also appears in another pattern: Composite.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 58

Consider the official model of Decorator pattern:

 4.2 Class Diagram

We have all the elements to define the class model that meet the specifications, based on the
Decorator pattern.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 59

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 60

 4.3 Implementation

Let us code the different classes. The Decorator pattern is known to generate many small classes.
Sure it takes a concrete class for the decorated object, and one for each designer.

 4.3.1 Coding

The Component class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 61

The Decorator class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 62

The Mission class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 63

The DefenseUnit class :

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 64

The HeavyMedicalUnit class:

The LightMedicalUnit class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 65

The LogisticUnit class:

The MedicalGroup class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 66

The ScientistGroup class:

The SecutityGroup class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 67

We will use the usual index.php as the controller of our pattern. The controller will instantiate
objects and use them.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 68

The execution result should look like this:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 69

 5 SINGLETON PATTERN

The shield is a unique resource that can be controlled by several desks. Under these conditions, the
current state of the shield (open or closed) must be accessible from a single information. It is not
necessary that this information is copied because even with a update system, there is a risk that a
copy is not in tune with reality, at a moment. This obviously causes unpredictable behavior.

In this example we will ensure that the shield is indeed a unique resource that can be used by
several desks simultaneously.

For this we will use the Singleton pattern, the simplest design patterns. It consists to a single class.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 70

 5.1 Heading Singleton pattern

The goal of the Singleton pattern is:

• Ensure that a class is instantiated only once, ie there can be only zero or one object of this
class.

• Provide a single point of access to the object.

Our unique resource is the shield of the Enterprise. Decide now that the pattern class will be called
ShieldSingleton.

It is clear that the ShieldSingleton class must control the number of instances of itself. It is therefore
necessary to prevent anyone can instantiate objects using "new ShieldSingleton()".

Therefore the first characteristic of a Singleton type class, is having its constructor as private, so
inaccessible from outside the class. In some cases the constructor will even be without
implementation, ie empty.

But in this case how to instantiate a ShieldSingleton object ?

This is the second characteristic of a Singleton class: it must provide a public method to obtain the
single instance of the class. But even this method must be unique. So it will be declared STATIC, ie
it only exists in the class and not in the instantiated object. Call this method getInstance ().

In short it is the class itself that instantiates the single object, and it returns a reference through its
public method getInstance (). The reference to the unique object will be materialized in
ShieldSingleton class with an attribute also private and static.

It should be noted that the unique object will be instantiated at the first invocation of getInstance().

Here is the corresponding class model:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 71

The code presented here is required for every class to be Singleton type, but generally we can find
in these classes, other attributes and methods that are her own.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 72

 5.2 Coding

Adapt the design pattern to the problem of our shield, enriching the class in this way:

• _uniqueInstance is a private static attribute: it will exist only in the classroom and not in the
object.

• _isShieldOpen returns a boolean. This is a private attribute.

• The private constructor.

• getInstance () is public but static.

• openShield () and closeShield () inverts the value of _isShieldOpen.

• getShieldState () returns "OPEN" and "CLOSE" depending the value of _ isShieldOpen.

Here is the class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 73

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 74

We will use index.php as usual as our controller. The controller will instantiate objects and use
them.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 75

And here is the result of executing:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 76

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 77

 6 Design patterns related to Factory

Design patterns? Yes, there are two. We can even say that there are three, because one of them is
not really a design pattern, but we can’t ignore.

The concept of Factory is for instantiating objects. Some situations require that instantiation of
objects is assigned to a class or group of classes.

In this case, the class wishing instantiate an object will not use the new() operator, but will ask the
factory to provide the requested object.

The purpose of this decorrelation is the same in OOP: isolate treatment (here instantiating objects)
to make it shareable, maintainable, and allow it to integrate complexity. Indeed instantiation often
requires choosing the objects to instantiate, based on the context.

Design patterns related to the concept of Factory meet these constraints by delegating the
instantiation of objects to classes which it will be the responsibility.

In the following three chapters we will focus on:

• The “pseudo Factory”: it is not a formal design pattern, but a simple instantiation approach,
resembling a Factory, which is often used for simple problems.

• Factory Method: design pattern in which the factory is represented by an abstract method.

• Abstract Factory: design pattern in which the factory is materialized by an abstraction which
can be an interface or an abstract class. Here we use an interface.

During these three chapters, we will find out how are made those superb uniforms used in the fleet
of the Confederation, which includes the Enterprise.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 78

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 79

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 80

 7 PSEUDO FACTORY

Aside from the fact that there are outfits for men, women and there are three colors (yellow, blue,
red), these outfits seem trivial.

They don’t. These are high-tech products designed to meet the dangers of space travel:

• The fabric gets two treatments: one to mitigate electromagnetic radiation, the other making
insensitive the most dangerous acids.

• The garment contains a miniaturized device to know its spatio-temporal position (and that of
its occupant).

The manufacturing steps are as follows:

• Assembly parts for sewing.

• Anti electromagnetic radiation treatment.

• Anti Acid treatment.

• Putting the locator.

• Tests of the garment.

Confederation sure wishes that these manufacturing steps are followed, as the production program
should have a method like this:

Unfortunately there are many types of clothes, so you have to add code to choose the garment to
instantiate:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 81

Here the choice of the object to instantiate is a treatment is subject to evolution: new models of
clothes may appear, others may be deleted. In this case it will inevitably change the code of this
method.

In contrast, the manufacturing process seems more stable, it will change little or not, and moreover
it is independent of the type of clothing.

Design patterns hate to mix variable and stable concepts in the same class.

We will isolate a new class, the code responsible for the selection of the object to instantiate. Call
this class PseudoClotheFactory. We will create a getNewClothe() method to obtain a new Clothe
object by providing the type of garment we want.
Here is our Factory:

We must of course provide classes for clothes. Whatever garment model, it must implement the
following methods:

• assemble()

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 82

• electromagneticTreatment()

• acidTreatment()

• placeLocalisor()

• test()

And any garment model must know:

• His colour.

• His model name.

• The fiber type: Deluxe models have a more resistant type of fiber.

We also provide a getDescription() method that allows each garment to provide a detailed
description.

Create an abstract class that require any model of clothing to complete the contract:

 Finally, we need a class to represent the entity that decides to make a garment, and will therefore
use our Factory. This is somehow the fabrication clothes shop. Call this class ClothingWorkshop
and give it a makeClothe() method.

This class will have to know his Factory.

It will also have a reference to the clothing that will be instantiated for her by the Factory.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 83

The makeClothe() method, which takes as parameter a garment model and color, triggers the
production of the requested garment using its private method startMaking().

The whole assembly gives us this:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 84

 7.1 Coding

Let's start with the abstract class Clothe:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 85

Then we have a class for each of the four clothe models:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 86

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 87

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 88

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 89

The PseudoClotheFactory class: it only knows what objects must be instantiated:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 90

And finally ClothingWorkshop class that is the customer of the Factory.

ClothingWorkshop knows the process of making clothes, but it must ask the factory to instantiate
clothes objects for it.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 91

As usual we will use index.php as the controller of the whole design.

Index.php must instantiate a ClothingWorkshop and ask him to make clothes:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 92

And here is the result:

Yes we just isolated a variable concept. But in doing so the Factory becomes:

• The unique and sharable access point for clothing items.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 93

• The complexity (here very low) of choosing objects to instantiate, exists only in the Factory.
This facilitates maintenance.

As mentioned earlier in this chapter, the PseudoFactory is not a design pattern, but is often used for
simple problems.

In the next chapter we will discuss the Factory Méthod pattern which allows the use of Factory by
inheritance. So there can be several Factories.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 94

 8 FACTORY METHOD PATTERN

In the previous chapter, PseudoFactory allowed us:

• To control the instantiation of clothes.

• Implement the specificities of Standard and Deluxe ranges in different styles of clothes.

Today Confederation is facing a new problem: some galaxies using their own type of fiber for
clothing.

PseudoFactory can not by itself, manage those differences. We would need now a Factory for each
galaxy, in order to meet the production process imposed by the Confederation, while allowing
specific adaptations in each galaxy.

This problem can be solved by Factory Method and Abstract Factory design patterns.

In this chapter we will use Factory Method, and then in the next chapter we will go further with
Abstract Factory.

Well, consider two galaxies, ours: the Milky Way, and a nearby galaxy NGC1313 (15 million light
years).

Milkyway uses the official fiber to make clothes, while NGC1313 uses a special fiber called
arachno-fiber extremely resistant.

Moreover, as there are now several galaxies producing clothes, we must know the origin of each.

Finally, what we had with the Pseudo Factory remains: the manufacturing process must be the same
in all galaxies, and there is always the following differences between Standard and Deluxe ranges of
clothing:

• Assembly: Standard or Deluxe.

• Fiber: Standard or Deluxe (regardless of whether it is Milkyway or NGC1313 fiber type).

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 95

The principle of the Factory Method is simple: in a parent class, we define an abstract method that
is not implemented, and it is left to subclasses to implement it according to their specificity. This
abstract method: it is the Factory Method. It will play the role of Factory in subclasses, and will be
responsible for instantiating Clothe objects.
Each subclass will of course be specialized for a Galaxy.

Create the parent class and two subclasses, one for each galaxy:

ClothingWorkshop is an abstract class (its name is in italics). It also has an abstract method
createClothe() to be implemented by subclasses. This is the Factory Method.

The two subclasses will implement createClothe() so that it can create the clothes that meet each
galaxy requirements.

The Factory is somehow integrated into the Workshop. It was completely outside with Pseudo
Factory.

The makeClothe() method is invoked to ask the Workshop to produce a clothe, passing it as a
parameter, the desired model name and color. This method is common to all galaxies, so it is
implemented in the abstract class.

And it is makeClothe() which will invoke createClothe() to get a clothe object corresponding to the
galaxy.

StartMaking() is a private method, used internally by the Workshop to make clothing. This method
represents the manufacturing protocol that must be common to all galaxies, so it is implemented in

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 96

the abstract class.

Now for clothing:

The design used in Pseudo Factory can be reused with the following changes:

• We add an “origin” attribute to Clothe class: all clothing needs to know its original Galaxy.

• The assemble() method is abstract: each clothe will implement depending its range
(Standard or Deluxe).

• As there is now an abstract method, the class also becomes abstract.

We must of course create two groups each containing a clothing range for the Galaxy.

We ge this:

In Clothe class, we find the attributes:

• Colour.

• Clothe name.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 97

• Fiber type.

• Origin.

The methods are the same as in Pseudo Factory since the steps of the manufacturing process have
not changed.

The complete design is as follow:

How does it work ?

• To make a clothe we invoque makeClothe() method on the workshop concerned
(MilkywayClothingWorkshop or NGC1313ClothingWorkshop), passing it the model and
the desired color.

• makeClothe() invokes the protected createClothe() method, passing it the model and color.

• createClothe(), which is the Factory Method, will instantiate the clothe of the galaxy,
according to the model requested, and return this object to makeClothe().

• Finally makeClothe() invokes startMaking() which will implement the various steps of the
manufacturing process.

All is said. It only remains to code.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 98

 8.1 Coding

The abstract class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 99

MilkywayClothingWorkshop :

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 100

NGC1313ClothingWorkshop:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 101

Clothe :

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 102

MilkywayDeluxeMan:

MilkywayDeluxeWoman:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 103

MilkywayStandardMan:

MilkywayStandardWoman:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 104

NGC1313DeluxeMan:

NGC1313DeluxeWoman:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 105

NGC1313StandardMan:

NGC1313StandardWoman:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 106

 8.2 Tests

We will use index.php as the controller of all of our design:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 107

The result of executing gives us this:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 108

In conclusion we can say that from the controller, the design is fairly simple to use because you just
ask for a clothe to a workshop to get it completely fabricated. It remains only to ask his description
with getDescription() method.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 109

 9 ABSTRACT FACTORY PATTERN

In the previous chapter (Factory Method) we left some initiatives to clothes. In fact they were
responsible for determining the following attributes:

• Fiber type.

• Model name.

• Origin.

• Assembly type.

As for the test protocol, it was left to the workshop responsibility and we had no control over this
element.

Confederation therefore wishes harden production control, banning clothes and workshops to define
or select elements by themselves.

The following decisions were taken:

• The fiber type will be forced according to the clothe galaxy and range.

• The origin will be forced to clothes according to Galaxy.

• The type of assembly will be forced according to the clothe range.

• The test protocol will be forced according to the clothe Galaxy.

• The type of localisor will be forced to clothes according to Galaxy.

The only attribute that continues to be defined by the clothe is the model name, ie his own name.

These constraints seem complex to implement. They don’t.
With the concept of Factory, and provided that the design is done right, it's simple.

We can adapt our Factory Method to integrate these new constraints. But take this opportunity to
completely redo our design using the Abstract Factory pattern.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 110

The essential difference between the two patterns is that Abstract Factory, being external, can be
used by any application class, whereas Factory Method, as a method, should be seen more as a
dedicated private service to the class that implements this method.

But before starting work, a few words about this pattern.

In the chapter Pseudo Factory, we had the following design:

The Factory was external to ClothingWorkshop.

We can consider that the Abstract Factory pattern is an extension of PseudoFactory because we
simply allow the existence of several Factories, but by imposing a common interface, in which we
define a simple createClothe() method that will be responsible for the instantiation of all that is
needed to make the clothe, taking into account all the constraints mentioned.

We get this:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 111

Let’s see now the elements needed to make the clothe. As indicated earlier in this chapter, we must
impose the following to clothe:

• Fibre type.

• Origin.

• Assembly type.

• Test protocole.

• Localisor type.

These elements form a kind of construction kit, and it is understood that our factory will be in
charge of choosing the right components of the kit, depending the context.
This means that we have classes for kit components. We have one thing to ask an element: his
description. We therefore expect a getDescription() method.

Like all kit components should implement this method, we impose itvia a small interface. Which
gives us:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 112

All kit components are specific to each galaxy, except the assembly type that depends only on the
range (Standard or Deluxe).
About clothes: little changes from Factory Method:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 113

Clothe class has all its attributes, so it is able to describe itself completely, but it not defines its own
attributes. As agreed, this class has no more initiative. We simply ask it to run its manufacturing
stages.

The workshop is also slightly modified:

It has a reference to the Factory it is assigned.

The makeClothe() method is used to ask the workshop to produce a clothe.

startMaking() is the method that knows the manufacturing process.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 114

 The complete design gives us this:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 115

Principle of operation:

• The controller (not shown in the class diagram) invokes ClothingWorkshop.makeClothe()
method to make a clothe, passing the model and color.

• MakeClothe() invokes the factory that will instantiate the clothing and components kit, and
return it to the workshop.

• The workshop invoke its private method startMaking() which will apply manufacturing
steps to the clothe.

• Finally, the clothe made is returned to the controller.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 116

 9.1 Coding

ClothingWorkshop:

L'interface IclotheFactory:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 117

MilkywayFactory:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 118

NGC1313Factory:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 119

IKit:

DeluxeAssembly:

StandardAssembly:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 120

NGC1313UltraFiber:

NGC1313Localisor:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 121

NGC1313TestProtocole:

NGC1313StandardFiber:

MilkywayLocalisor:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 122

MilkywayStandardFiber:

MilkywayTestProtocole:

MilkywayUltraFiber:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 123

Clothe:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 124

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 125

MilkywayStandardMan:

MilkywayDeluxeWoman:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 126

MilkywayStandardWoman:

MilkywayDeluxeMan:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 127

NGC1313StandardWoman:

NGC1313StandardMan:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 128

NGC1313DeluxeWoman:

NGC1313DeluxeMan:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 129

 9.2 Tests

As usual we will use index.php as the controller of the whole design:

Here is the result:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 130

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 131

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 132

 10 COMMAND PATTERN

Generally, a request has an action that is always the same. It is a strong and enduring relationship,
therefore considered static.
But there are cases where this link must be changed according to context. For example:

• A request must trigger another action than the one initially planned.

• A request must trigger not one, but several actions.

The Command pattern in decorrelating requests and actions, will allow to easily integrate this kind
of constraint, adding intelligence between the two.

To summarize we can see this pattern as a programmable remote control: each button triggers one
or more actions, each button can be reprogrammed at any time.

It only remains to wait for the next opportunity to use this wonderful pattern.

Here's what the captain wishes to remote control:

• The Enterprise propulsion speed: on a scale of 0-5 (5 being the hyper-speed).

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 133

• The Shield (open / closed).

• The invisibility of the Enterprise (on / off).

• The display of the control room (on / off).

To understand how does the Command pattern work, for example, take the shield of the Enterprise).

Imagine a 2-buttons remote control:

• A button triggers the opening of the shield.

• A button triggers closure of the shield.

The game is played with three players:

• The remote control.

• The command (ie the action triggered).

• The controlled device (here the shield)

• Each button on the remote control is connected to one and only one command.

• Each command knows what device it must control and what action it should trigger on the
device.

• The remote control has no knowledge of the device controlled.

The principle is simple. Let’s see how to turn this into class model

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 134

MiniRemoteControl:

• The buttons are represented by two private attributes _blueButton and _greenButton.

• Each button is linked to a ICommand type object.

• To press a button it will invoke blueButtonPressed () or greenButtonPressed ().

Let's see what happens if you press the blue button, which corresponds to the opening of the shield:

• The triggering event is the invocation of blueButtonPressed() method.

• The blueButtonPressed() method in his turn invokes the execute() method of the blue button
_blueButton. Indeed _blueButton is simply a reference to a ICommand object, and more
precisely a ShieldOpenCmd object.

• This is actually the execute() method of the ShieldOpenCmd command that was executed.
This method works directly on the shield by invoking the open() method.

The basic principle is simple. Adapt now at the of Captain request.

Here is what our remote control should look like:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 135

We can make the following remarks:

• There may be unused buttons on the remote control. We will provide this.

• The drive is not a control “on/off” type, but may take a value on a scale of 0 to 4. It will
require a special treatment.

• We will need something to manage links between buttons and controls.

We will enrich our RemoteControl class:

• To manage the links buttons/commands, we will use two arrays: onButtons and offButtons.
These arrays will contain references to the ICommand objects for each button.

• We will have an attribute that indicate the number of functions the remote can handle (ie the
number of pairs of “on/off” buttons).

• We will need a method to assign a command to a button. Call it setcommand(). This method
will allow us to program or reprogram the remote control.

• Finally, we must be able to handle the push of a button. To do this we add two public
methods onButtonPressed() and offButtonPressed(). Each will take as a parameter the index
of the button in the arrays.

• As a tool we add a toString() method that displays the configuration of the remote control.

Our RemoteControl class becomes:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 136

The two commands that control the shield:

The two commands that control the invisibility:

 The two commands that control the display of the control room:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 137

On the speed of the Enterprise, the Engine class provides four methods to us:

• speedUp(): increases the speed of a level.

• slowDown(): decreasing the speed of a level.

• stop() : decreases the speed repeatedly until stop.

• max(): Increases the speed several times until you reach the maximum speed.

So we create four commands.

There is now the problem of unused buttons. If you press a button that is not programmed, it must
do nothing. But in our pattern, pressing a button invokes the execute() method of the command
associated with the button.

A first approach would be to test if the button has a good command before invoking this command.

But there is better: create a command that does nothing, and call it NullCmd. Like any command, it
has an execute() method, but it will do nothing. So there is no test to do. We must unsure that any
unused button is well associated with the command NullCmd.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 138

Here is the complete design:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 139

Well well...

After a meeting with the captain, it’s a button that puts Enterprise in "danger mode”, ie:

• Maximum speed.

• Shield on.

• Invisibility on.

The opposite of "danger mode” is the "normal mode":

• Low speed.

• Shield off.

• Invisibility off.

As for the "Cancel" button it should just do the reverse of the last command executed.

Fortunately, thanks to the Command design pattern, these new features will give us no problems.

Let's start with the cancel button:

• The remote control must store the last command to be able to cancel it. So we add a private
attribute _lastCommand which contain the reference of the last command executed. Thus
each command will have to update _lastCommand.

• The remote control should also have a "Cancel" button, which will be realized by a
cancelButtonPressed() method.

• Who must know what it takes to cancel a command ? This is the command itself. We must
ensure that each command knows how to cancel the action. To do this add a cancel() method
to the ICommand interface. This method must be implemented by all commands.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 140

Here's what should happen when you press the Cancel button on the remote control:

• The cancelButtonPressed() method of the remote control is invoked.

• This method in turn invokes the cancel() method on the _lastCommand attribute. Indeed this
attribute is simply a reference to an object of type ICommand.

• The cancel() method of the command acts on the controlled device, so as to cancel its action.

Here are the changes to classes. Here only one command is represented, but it is understood that all
commands must implement the new cancel() method.

Now let’s see the command which triggers several actions.

Adaptation to achieve this result is extremely simple. Simply create a command whose methods
execute() and cancel() perform several actions.

For this command to know what to do for each of the two methods, we add two private attributes of
array type, which contain references to commands to execute.

In summary this macro command only executes other commands. Being itself a command, it
provides the execute() and cancel() methods.
Here is this new class:

Before moving on to coding, here is the final classes model:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 141

 10.1 Class Diagram

 Some remarks:

• Each command directly control a device.

• The macro command does not directly control a device, as it will only execute other
commands listed in the executeActions and cancelActions arrays. This is indicated by the
solid arrow connecting MacroCommand to ICommand. This arrow means that
MacroCommand has several references to ICommand objects.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 142

• The Engine class offers four functions, we created four commands.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 143

 10.2 Coding

Invisibility class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 144

ControlRoomScreen class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 145

Propulsion class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 146

Shield class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 147

MacroCommandCmd class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 148

NullCmd class:

ICommand interface:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 149

ShieldEnableCmd command:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 150

ShieldDisableCmd command:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 151

ScreenOnCmd command:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 152

ScreenOffCmd command:

InvisibilityOnCmd command:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 153

InvisibilityOffCmd command:

MaxCmd command:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 154

StopCmd command:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 155

SpeedUpCmd command:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 156

La commande SlowDownCmd:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 157

RemoteControl class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 158

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 159

 10.3 Tests

As usual we will use index.php as the controller of the entire design

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 160

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 161

Here is the result:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 162

 10.4 Conclusion

As we have seen, the Command pattern separate two concepts that are usually combined:

• The request for an action to perform, ie the invocation of a method that will do a job. This
notion becomes an Command.

• The execution of the work, ie the fact of performing the work defined by the command.

Action requests being encapsulated in standard objects (commands), it is easy to store them for later
execution.

Thus the Command pattern is often used to treat work queues: One or more processes are
responsible for executing a command one after the other. The process, which has no idea of what
the command really does, simply invoke the execute() method of the command. Once the work is
completed, the process takes the next command.

The pattern can also be used to historicize the activity of a system between two backups. If a crash
occurs after restoring the last backup, it will be possible to replay historized commands to find the
state of the system at the time of crash.

Uses the same pattern can be very different from each other.

This pattern, again, is based on the composition and not the implementation. This means that
treatments are encapsulated in small, specialized classes that are associated by the controller, using
the composition (ie references between objects) at run time. This means, in our example, the
controller can reconfigure the remote control at any time.

In contrast, a conventional design, based on implementation, we would certainly give us less
numerous but larger classes containing hard-coded treatments. Any changes would often require to
touch the classes. At run time the controller would have little leeway.

Here is the official Command pattern class diagram:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 163

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 164

 11 ADAPTER PATTERN

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 165

The control system of the Enterprise is as follows:

The IEnterpriseControlSystem interface imposes a set of methods necessary to manage the
Enterprise.

The Enterprise class then implements these methods.

Use this class a little before going further. Here is the code of the interface:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 166

And that of the Enterprise class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 167

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 168

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 169

Here is an example of using the Enterprise class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 170

And here is the result of executing:

Indeed Mr Sulu. But interesting things happen now.

The Klingon ship has its own control system defined by the interface IKlingonGuidingSystem.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 171

As can be seen, it has not much in common with that of the Enterprise. It will however be necessary
to make these systems compatible.

The Adapter pattern is one of the most intuitive. It actually acts as an adapter, allowing two systems
seem to be incompatible, to communicate. Just as an adapter allows an electrical device to plug into
an electrical outlet in a foreign country.
Our adapter:

• Will be materialized by a class derived from IEnterpriseControlSystem. It will therefore
have all the methods of controlling a spaceship Enterprise Type.

• But will have a reference to a Klingon vessel type.

• For each Enterprise type method, perform the equivalent of the Klingon ship.

It is this class that has the intelligence to adapt between the two systems.

Here is the corresponding class model:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 172

Let's see how does KlingonVessel class work:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 173

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 174

We must now determine how we adapt each Enterprise method to a Klingon method.

• The ignition() method turns the Klingon engine on. So this method directly corresponds to
the propulsionOn() method of the Enterprise.

• Similarly, engineOff() is corresponding to propulsionOff().

• The setTarget() method corresponds to steering(). These provide three spatial coordinates
defining the new course. But the Klingon reference system is not the same unit of
measurement. It will be necessary to multiply the coordinates by a factor.

• The SetSpeed() method set the speed of the Klingon ship. It has a different operation of the
Enterprise because here we define directly the target speed, while the Enterprise is
accelerated (SpeedUp()) or decelerated (Slowdown()). Both methods must use SetSpeed()
by increasing or decreasing the speed of a Klingon vessel from its current speed provided by
getSpeed().

• The getSpeed() method corresponds to getCurrentSpeed().

• The getTarget() method corresponds to getCoordonate().

We just have to implement the KlingonVesselAdapter class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 175

As can be seen, for each treatment, our adapter invokes the appropriate method on the Klingon ship,
directly for simple cases, or adapting the data if necessary.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 176

 11.1 Tests

 As usual we will use index.php as the controller of the entire design:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 177

Here is the result:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 178

The work is done. We converted the commands sent by the control system of the Enterprise and the
Klingon ship adapter responds correctly.

The official Adapter pattern:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 179

 12 FACADE PATTERN

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 180

The Enterprise has different systems which must be activated individually to get the vessel fully
operational:

Système Description

Communication
An internal network that can be enabled or disabled.
An external network which may be enabled or disabled.

ElectricNetwork Can be put in one of the modes: Off, Standby, Maintenance, On.

Engine Can be put in one of the modes: Off, Standby, Maintenance, On.

Gravity Can be enabled or disabled.

Teleportation Can be put in one of the modes: Off, Standby, Maintenance, On.

Weapon Can be put in one of the modes: Off, Standby, Maintenance, On.

To get Enterprise into service, it must use the following procedure:

• Enable internal and external communication networks.

• Set eletrical network to ON.

• Set artificial gravity to ON.

• Set teleportation to ON.

• Set weapons to ON.

There is also a procedure to get Enterprise in Maintenance Mode:

• Set internal communication network to ON.

• Set external communication network to OFF.

• Set electrical network to MAINTENANCE.

• Set artificial gravity to ON.

• Set teleportation to OFF.

• Set weapons to MAINTENANCE.

Another procedure to turn the vessel to Standby mode, and another to put it in Off mode.

For each procedure, we must instantiate objects and invoke the appropriate methods in a specific
order.

There is a certain complexity that we would like to get rid of. This is where the design pattern
Façade can be usefull.

The Facade pattern will take care of all this complexity and automate operations for us. We are
offering a limited number of methods to simply control the complex Enterprise system.

Specifically the Facade pattern is a class that fit between the complex system, and the user of the
complex system:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 181

To control the Enterprise is no longer necessary to know the complexity of the various systems. Just
use the methods proposed by the Facade. It will do the job for us.

As everything is clear, let's coding.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 182

 12.1 Coding

Communication: class

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 183

Gravity class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 184

Teleportation class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 185

Weapon class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 186

ElectricNetwork class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 187

Engine class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 188

EnterpriseFacade class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 189

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 190

 12.2 Tests

As usual we will use index.php as the controller of the entire design:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 191

Here is the result:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 192

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 193

 13 TEMPLATE METHOD PATTERN

To illustrate this pattern, we will look at the food served on board.
A modern and balanced food that make us dream.

All kinds of dishes are cooked on demand, but they are all made from a single ingredient: granules
containing all that is needed by the body.

There are lipids, carbohydrates, proteins, minerals, vitamins. They have no particular flavor, which
allow to transform them at will by giving them the texture, color and flavor desired.

3 textures are possible:

• The granules are left intact (pasta, small pieces of vegetables or meat etc....)

• The granules are mixed with water (soups, purees, creams...)

• The granules are kneaded with water, molded, partially dried, stripped. We obtain blocks of
different shapes: pies, pastries, meats...

Prepare a dish thus means following the steps:

• Take a quantity of granules.

• Transform into one of three textures.

• Add the desired dye.

• Add the desired flavor.

• Set temperature.

• Add optionally sauce.

• Add optionally a vitamin supplement.

All kinds of dishes are achievable. Simply choose the texture, flavor and color.

But look more closely at the recipes for each of the three textures:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 194

As can be seen the three recipes are very similar: some steps are common, others are specific.

We would be tempted to factor what may be, but how factoring parts of an algorithm ?

For this kind of problem, the best solution is the Template Method design pattern.

This pattern will allow us to define a general algorithm imposed, while leaving the door open to
some variability for steps that require.

Let's start by putting the 3 recipes in parallel to identify common operations:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 195

We can separate operations into 3 groups:

• Group A: operations are identical in the three recipes (1,3,4,9,10,11 operations). These
operations will be defined and implemented in our Template Method. They will therefore be
mandatory and not modifiable.

• Group B: identical operations but does not involve the 3 recipes. The operation is optional
(2,6,7,8 operations). These operations will be proposed by the Template Method in the form
of hooks: the user class has the option to run or not and may even define its implementation.

• Group C: operations that are conceptually the same step, but the way to do it is different in
the three recipes (step 5). These operations will be required, but subclasses will have to
implement them.

We now define what will become our Template Method: the unique recipe that can be adapted to 3
recipes.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 196

Methods imposed (in blue) will be defined as static in the superclass that is not inherited by
subclasses. The latter therefore can not redefine.

Methods "hook" type will be defined as protected to be accessible only by subclasses, not
implemented because it is precisely the subclasses which are responsible to implement them
according to their specific needs.

The delegate method is defined as abstract. It is a mandatory step in the recipe, but must be
implemented by subclasses as how to vary from one recipe to another.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 197

 13.1 Class model

The Template Method pattern is in the form of an abstract class containing the Template Method
and a number of other methods needed.

it is possible to create classes derived from the abstract class. In our case we will create a subclass
for each recipe:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 198

 13.2 Coding

PrepareFood class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 199

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 200

GranularForm class must only implement the blend() method:

La classe FluidForm ne doit implémenter que les méthodes blend() et addHotWater():

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 201

The SolidForm class must implement several methods:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 202

 13.3 TESTS

As usual we will use index.php as the controller of the whole design.
The code is extremely simple:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 203

Here is the result:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 204

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 205

 14 STATE PATTERN

Continue to take an interest in nutrition aboard the Enterprise. With the Template Method pattern,
we saw a single ingredient allowed to prepare any dish.
Now let's see how the machines that prepare dishes on demand works. The operation of these
vending machines is very simple:

• The person affixes his hand on an optical sensor to be identified.

• The person verbally indicates the desired dish.

• The machine prepares the dish.

• The machine indicates that the dish is ready.

• The person removed the dish.

• At any time you can press the emergency stop button that puts the distributor
pending maintenance.

This operation can be represented by the following state diagram:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 206

The distributor may have five states:

• Wait: the machine does nothing and waits for an order.

• User identified in: a person has been identified on the digital sensor.

• Dish chosen: the person chose a dish.

• Dish ready: the person can remove the dish.

• Maintenance: the emergency stop button was pressed.

We understand that to respond favorably to an action, the machine must be in the state
corresponding to this action.

If, for example, the machine is in state "dish chosen", it cannot process action "digital scan". The
only action in this case is "start cooking".

We guess right away the complexity of our future class representing the vending machine: for every
action there should test the current state of the distributor to find out how to treat this action. We
obviously do not going to engage in this way.

The State pattern perfectly meets this problem with a very simple approach:

• We’ll have a class for our vending machine. Call it CookingMachine.

• Each action become a method in the CookingMachine class.

• Each state is a class that implements an interface requiring the class to declare a method for
each action.

Here is the corresponding class model:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 207

See how the design works:

• It is CookingMachine receiving user actions.

• CookingMachine has a reference to the class representing its current state, with its attribute
_currentState.

• When CookingMachine receives an action, it only transmit it (ie delegate) to the object
referenced by the class attribute _currentState.

• It is therefore _ currentState that concretely deals with the action.

• In addition, if the action involves a change of CookingMachine state, it is still _currentState
object that will make this change.

• Classes representing the states, implement all possible actions. Generally, in each class, one
action (ie a single method) performs a significant treatment. Others, in our case, display a
message indicating that the action is not admissible for this state.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 208

We see that CookingMachine is just a mailbox: it transmits actions to its current state.

It is easy to change the behavior of a state intervening only on the relevant class. It is also easy to
add a new state: just create a new class that implements the interface IState.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 209

 14.1 Coding

IState interface:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 210

ChoiceMadeState class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 211

MaintenanceState class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 212

MealPreparedState class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 213

UserAuthenticatedState class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 214

WaitState class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 215

CookingMachine class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 216

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 217

 14.2 TESTS

As usual we will use index.php as the controller of the whole design.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 218

And here is the result:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 219

 15 ITERATOR PATTERN

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 220

The problem was quickly identified.

Decks A and B are managed by the new program that stores the rooms as references in an array. To
get the rooms list you have to walk the array elements by varying the index from zero to n:

Decks C and D are managed by former program that stores the rooms as a linked list. To get the
rooms list you must start from the first element and follow the references to the last element:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 221

As our goal is to have a program that can provide a list of all the rooms of the Enterprise (ie bridges
A, B, C and D), we are facing a problem of incompatibility.

To solve this incompatibility, a first approach lead us to consider two treatments:

• A treatment for decks A and B, knowing iterate over an array structure (the existing
treatment).

• Treatment for decks C and D, knowing iterate over a linked list structure.

We can easily guess the drawbacks of this approach:

• If the logic of room scanning change in the future, it would change the two treatments.

• If a new rooms storage structure appears we should add a third treatment.

For these reasons we will not engage in this direction.
Make a point about the current class model:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 222

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 223

 15.1 Presentation of the Iterator pattern

We can summarize the Iterator pattern at two points:

• It separates the iteration process, from the thing that is iterated. This means that the class
that contains the collection that you want to iterate, does not offer treatment to iterate
through this collection. This treatment will be isolated in another class called Iterator.

• The iterator will have a unified interface, ie it always offer at least the following standard
methods:

◦ hasNext (): This method return TRUE as long as there is still at least one item in the
collection.

◦ next (): This method return the reference to the next item to go.

How do we use the iterator?

• The program wishing to iterate over a collection, must ask the class managing this
collection, to provide the reference of its iterator.

• Once the iterator obtained, simply use a standard loop:

It is understood that the program that wants to iterate over the collection, has no idea of how this
collection is managed and how it actually iterates over.

It must simply have the iterator for this collection, and use both hasNext() and next() methods. This
is the iterator that actually performs the course of collection.

We now need to change our class model to make it a real Iterator pattern. To do this we must make
the following changes:

• We will ensure that OldDeckSystem and NewDeckSytem classes implement a IDeckSystem
interface, forcing them to declare a getIterator() method. Indeed, these two classes will have
to provide their iterators.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 224

• We will create a IIterator interface forcing to declare the two methods hasNext() and next().

• We will create a NewDeckSytemIterator class that implements the IIterator interface. This
will be our iterator to the new system (decks A and B).

• We will create an OldDeckSystemIterator class that implements the IIterator interface. This
will be our iterator to the old system (decks C and D).

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 225

Here is the new class model:

Remember that we want to make a program that displays a list of all rooms in the Enterprise.

The program should use the desing in the following manner:

• Have a reference to an OldDeckSystem object.

• Have a reference to a NewDeckSystem object.

• Get from OldDeckSystem object, a reference to its iterator using getIterator() method.

• Scan the rooms managed by this iterator using the hasNext() and next() methods.

• Get from NewDeckSystem object, a reference to its iterator using getIterator() method.

• Scan the rooms managed by this iterator using the hasNext() and next() methods.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 226

The code is actually quite simple because the complexity is managed by the iterators.
Let's go to the coding.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 227

 15.2 Coding

IDeckSystem interface:

IIterator interface:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 228

Room class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 229

OldDeckSytem class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 230

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 231

La classe NewDeckSytem:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 232

La classe NewDeckSytemIterator:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 233

La classe OldDeckSystemIterator:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 234

 15.3 Tests

As usual we will use index.php as the controller of the whole design.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 235

Here is the result at run time:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 236

 16 COMPOSITE PATTERN

With the Iterator pattern we saw how to encapsulate iteration operations over a collection, and
provide a unified interface to facilitate these operations.

Composite pattern in turn, will allow us to iterate on composite tree structures. That means that
each element of the tree can be a simple element called leaves or a composite element, the latter
may in turn contain leaves or other composite elements.

Here is the tree structure defined by the captain:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 237

 The sectors are:

• Commandement

• Teleportation

• Propulsion

• Machines

The Machines sector is included in Propulsion sector.

The rooms are simple elements called leaves.

There is a root element named Enterprise that represents the entire vessel.

Browsing a tree structure uses recursion. This is a particular type of programming in which a

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 238

treatment can be performed by itself in a nested manner. See the appendix "Recursion" at the end of
document.

 16.1 How to browse a tree

Tree structures have their terminology:

• All elements of the tree are called nodes.

• There is always a root node that contains all others. For us it is the Enterprise node.

• Nodes that contain nothing are called leaves. Here they are rooms.

• Children are the nodes immediately beneath a parent node. For example, the Propulsion
node has 3 children: Room 03A, Room 03B, and Machines. But not Room 04A and Room
04B.

In the Enterprise tree, we find two types of elements:

• Rooms: they are simple nodes that contain nothing (leaves).

• Sectors: children of these nodes can be rooms or other sectors. For example, the
Teleportation sector contains two rooms. The Propulsion sector contains two rooms and a
sector.

Tree scanning starts from the root node.

Children of the root node is traversed, and if a child is a composite (a sector), then we explore
immediately by applying the same approach.

Whenever an sector is explored, it is a new exploration process that starts, and the exploration of the
parent process is put on wait state. This is the principle of recursion.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 239

According to the rules we have just mentioned, the course of our tree should be the following
(follow the blue arrows):

Here is the objective of Composite pattern: browse a tree structure in this way. Finally it is not so
complicated !

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 240

 16.2 How does the Composite pattern work

In this design pattern, two solutions will be proposed for the tree scanning implementation: A and
B.

They are two variants equally valid in terms of performance.

Alternative B is a little simpler, so we start with it. In this approach, all classes will be suffixed by
“_B”.

It is very important to have assimilated the Iterator pattern, seen above, because it is used in the
Composite pattern.

Indeed, when the Composite pattern traverses the tree and it encounters a sector, it will ask to
provide its iterator. This iterator is simply an Iterator pattern.

So we guess the use of two types of iterators in the composite pattern:

• The iterator provided by a sector, we call it "SimpleIterator".

• The iterator of the tree as a whole: we call it “CompositeIterator”.

Remember in the Iterator pattern, we defined an interface to impose hasNext() and next() methods:

 We take this interface in the Composite pattern, and we define two classes that implement it:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 241

SplStack is a class provided by PHP. It will be used here to stack the successive processes of sectors
exploration. This is directly related to the recursion.

Instead of a stack, it would have been possible to use a simple array. But the opportunities to use a
stack are rare. Do not deprive !

Reminder stacks:

The stacks are part of data structure in computer science, as well as variables, arrays or linked
lists…

The stack behaves like a stack of plates:

• You can stack an additional element: push().

• You can unstack (remove) the top element: pop().

• You can read the top element without unstacking: top().

• You can tell if the stack is empty: isEmpty().

• You can find out how many elements are in the stack: count().

We also need classes to materialize the tree nodes. Define a derived a TreeNode_B class whose
derive Sector_B and Room_B.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 242

Sector_B represent a sector and Room_B a room.

Some methods defined in TreeNode_B, apply only to Sector_B.

For example, the add() method adds a room to a sector, has no meaning for a room (you can not add
a room to another room). To overcome this little problem, a default behavior will be defined in
TreeNode_B class for some methods, and these will be overridden, if necessary, in subclasses. We
will return by examining the code.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 243

Here is the whole design:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 244

 16.3 The B alternative coding

We must dive into the code at some point. We'll start with base classes that do not give any
particular problems.
We conclude with CompositeIterator_B class that handles recursion and is the hardest part of this
pattern.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 245

TreeNode_B class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 246

The add(), remove() and getChild() methods have a default implementation which returns an error.
This implementation will be the inherited in Room_B.

But in Sector_B we redefine these three methods because they make sense in this class.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 247

Sector_B class :

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 248

Room_B class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 249

The Iterator_B interface: it is the same interface as the Iterator pattern.

SplStack class: see the following URL:

http://php.net/manual/en/class.splstack.php

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 250

SimpleIterator_B class: almost identical to Iterator pattern class.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 251

CompositeIterator_B class:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 252

CompositeIterator_B code is the heart of Composite pattern. It manage the complexity of recursive
tree scanning.
Now see the code that will use the entire design. As usual we use index.php:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 253

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 254

And here is the result:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 255

To understand the way CompositeIterator works, the better is to run it "by hand":

• Draw a tree on a piece of paper, with sectors and rooms, or take the tree exemplary early in
Composite pattern.

• Make sure there is at least one sector that contains a sub-sector, as this is a significant test
case.

• Save a corner of the paper to represent the stack. Its content will evolve during the course of
the tree.

• Follow the code of the different classes as if you were the computer.

• Arm yourself with patience because this part is particularly difficult.

 16.4 Can we go further?

As seen in our index.php controller using CompositeIterator is very simple.

Since each node is really recovered by the controller, we can imagine all sorts of treatment on them.

If we want for example, display the list of rooms that have 5 or more places, just add a test in the

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 256

loop in index.php:

We completed the study of variant B Composite pattern. Before turning to alternative A (slightly
more complicated) let’s examine a kind of "automatic" tree scanning that requires very little code
and can, in some cases, be sufficient.

 16.5 Automatic propagation scanning

In this type of scanning, we call a method on the root node, and we ensure that this appeal be
propagated to all nodes of the tree.
It is a form of "automatic" recursion that spreads based on parent-child relations.

Advantages:

• There is very little code to write, and it is very simple.

• We do not use any iterators.

•

The disadvantages:

• The controller that run this treatment (for us index.php) does not recover each node of the
tree as in variant B above or variant A which will be presented later. As nodes are not
recovered, no treatment or filtering is possible on them.

• We must add a method in Sector_B and Room_B classes.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 257

Let's see how does this type of scanning works.

The print_propagation() method has been added to TreeNode_B and Room_B classes:

To run this propagation scanning, just add this code in our index.php controller:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 258

And here is the result:

Now let’s go to the A variant of the Composite pattern.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 259

 16.6 The A alternative

In A alternative, the same classes are used and are suffixed with “_A”.

Two classes are changed:

• CompositeIterator_A: hasNext() and next() method.

• Sector_A: getIterator() method.

The tree scanning no longer uses stack. Instead, several CompositeIterators are instantiated and
linked along the progress in the tree.

The change in Sector_A is related to getIterator() method. In B alternative, this method returns a
new SimpleIterator. In A , it must return a CompositeIterator_A that encapsulates itself a
SimpleIterator.

We will come back to it when examining the code. Before that, look at how does A alternative
works.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 260

The figure below shows the situation after the first instantiation of CompositeIterator_A pointing to
the root.

A CompositeIterator_A is always accompanied by a SimpleIterator_A, they are instantiated at the
same time by Sector_A.

"base I." represents the private variable $ _baseIterator.

"cur. I." represents the private variable $_currentIterator.

These two variables are used by CompositeIterator_A. We will come back to it when examining
code.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 261

The figure below shows the situation after the instantiation of the second CompositeIterator_A
pointing to the node "Commandement ".

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 262

The figure below shows the situation towards the end of the tree scanning, when the last
CompositeIterator_A is pointing on the “Machine” node.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 263

 16.7 A alternative coding

The Iterator_A interface: no change.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 264

The TreeNode_A class: no change:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 265

The Room_B class: no change:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 266

The Sector_A class: getIterator() method is changed.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 267

The SimpleIterator_A class: no change:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 268

CompositeIterator_A class: several changes:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 269

Again to understand the process through the tree, the best is to run it by hand on a sheet of paper,
with a good dose of patience.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 270

Now let’s see the code that will use the whole design. We use the usual index.php:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 271

Here is the result:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 272

We always have the possibility of testing on each node of the tree as we did in Alternative B: list all
rooms having 5 or more seats.

Here the loop to add into index.php:

Finally we still have the tree scanning with propagation of a method call, as seen in Alternative B.
The code remains the same:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 273

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 274

 17 Additional Notions

 17.1 Loose Coupling

Refers to a dependency relationship between two or more classes, when this dependency
relationship is reduced to a minimum.

We systematically search to define loose coupling between classes and design patterns are all in this
direction. Designs obtained are more likely to face future developments.

 17.2 The open / closed principle

This principle means that a class is closed to any changes inside the class, but open to changes by
extending the class.
Prohibiting the change inside a class, limit the risk of introducing new errors.

But allowing extend the functionality of a class, we preserve the design scalability.
Design patterns respect this principle, especially the Decorator pattern, on which it is based
exclusively.

 17.3 Recursion

In computer science, a recursive process is a process that contains a call to itself.
The stop recursive processing criterion is fundamental. If the stop condition does not occur, the
recursive calls will be performed indefinitely, which can lead to a complete blockage of the
computer, due to the occupation of the entire main memory.

 17.3.1 The recursive function.

This is a simple function that contains a call to itself. The classic example is the function to
calculate the factorial of x:

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 275

This type of treatment is based on a stack mechanism to be handled automatically by the language,
and at each new call of "factorial" function will stack the execution context of the function. The
context here boils down to the value of x.

When the stopping criterion occurs, the language will pop the contexts and complete execution of
each, ie multiply its own value of x, with the value that was returned by the previous context.
Unstacking the contexts, the values of x will multiply together to provide the final factor of the x.

 17.3.2 Other kind of recursion:

Recursion by propagating a message in a tree structure.

A method is called on the root element of the tree. This method calls his counterpart on his children
around, and so on.
There is no stopping criterion, processing stops when all nodes of the tree were covered.
These are the links between tree nodes, causing the recursive behavior.

Recursion with recursive instantiations.

In Object Oriented Programming: the recursive call is made on the same method name, but on an
object that is instantiated when the recursive call occurs. Recursive instantiations stop when the
stopping criterion occurs. The stack here is represented by the instanced objects.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 276

 18 Annexes

 18.1 Naming Conventions

The following naming conventions were used in this tutorial:

Classes: UpperCamelCase

Iinterfaces : UpperCamelCase
Functions et methods: camelCase
Variables: camelCase
Constantes: ALL_CAPS

 18.2 PHP source code

All PHP source code is provided in a separate archive, available on www.smaltek.fr.

 18.3 Tools used

I used the following open source tools:

WAMP: www.wampserver.com

Wamp installs the following:

• An Apache server with PHP module.

• A Mysql database server. This MySQL server is not used in this tutorial.

NETBEANS: http://netbeans.org/

Netbeans is an IDE (Integrated Development Environment). It allows you to manage projects as
sources codes for different languages including PHP.

Eclipse (www.eclipse.org) is another comparable IDE, also open source.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 277

Configuration of the project in NetBeans:

• I grouped all design patterns in a single Netbeans project.

• Each design pattern is in a subdirectory of his name.

• In each subdirectory I put the following two files:

◦ autoloader.php

◦ includePaths.php

Autoloader.php content is the same in all design patterns:

PHP __ autoload() function will automatically load classes.
Here, all the classes and interfaces must be suffixed with ". Class.php" for this to work.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 278

The includePaths.php content:

This script will add in operating system research paths, the directories where are the classes and
interfaces of the design pattern.
The paths in this script have to be changed for each design pattern.

COSMIC DESIGN PATTERNS WITH PHP Maxime KELTSMA smaltek62@gmail.com 25-11-2013 Page 279

 19 Conclusion

This tutorial shows only a part of the 23 original design patterns from GOF (Gang Of Four)
http://fr.wikipedia.org/wiki/Patron_de_conception

Moreover, this list is not fixed. New patterns emerge. The latter often being merely variations of
existing patterns.

A pattern can hide another.

A pattern is not monolithic. Some patterns combine to form a new pattern. We have seen for
example that Composite used an Iterator.
Patterns associated in this way are called Compound Patterns.
http://serviceorientation.com/soaglossary/compound_design_pattern

Pattern at all costs.

Some pitfalls to avoid:

• Place some design pattern when it is not justified, can only add unnecessary weight to the
project. This is equivalent to take a plane to go to the local bakery.

• Transform the problem to make it compatible with a pattern: It is not the specification that
fits the design patterns but the reverse.

• Prepare a project to all conceivable future developments: It is a utopia that can add
significantly weight to the project in coding and tests. Rather should be defined with the
customer the "reasonable probability" of such future developments and prepare the project
accordingly, possibly using design patterns.

End of document

Copyright 2012 www.smaltek.fr

Any reproduction, even partial prohibited without permission of the author.

